Cutting corners, speeding, cheating, and heavy legal machinery in science: Why scientific integrity cannot be contained as a fringe problem

Matthias Kaiser

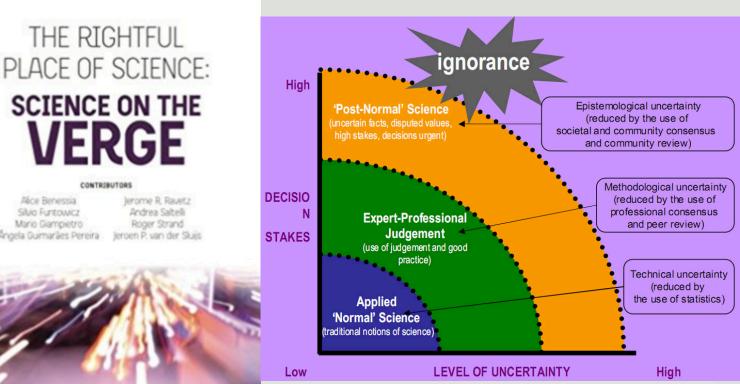
Centre for the Study of the Sciences and Humanities

University of Bergen

A "philosophical" contribution

Cf also:

CONTRIBUTORS


Alice Benessia

Silvia Funtowicz

Mario Giampietro

Angela Guimarães Pereira

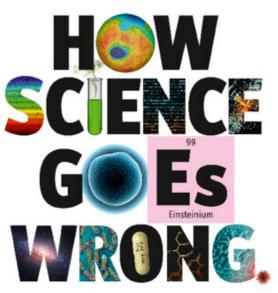
Post-normal science: Funtowicz & Ravetz 1992

Reflect:

- How many times have you been speeding recently?
- Now, what do you do when the GPS Navigation System tells you it is X minutes to goal, but you were detained in traffic and thus e.g. 3 minutes behind schedule?

The probable causes of scientific misconduct?

- Rotten apple theory
- Lack of training and knowledge
- Systemic factors in knowledge production


What I do NOT accept:

- That the main problem with scientific integrity rests with human psychology of the individual;
- That FFP & QRP exhausts the main bulk of problems of scientific integrity;
- That problems of scientific integrity are at the peripherie of good science;
- That we can aim at "objective" measures of scientific integrity;

Rather I tend to argue:

- Scientific integrity has become a serious problem because our current science – all of it – is in a deep crisis!
- The crisis of integrity = the crisis of quality in science.
- Supposedly objective systems to monitor and navigate the quality of science are in effect counter-productive.
- The more "scoring" becomes a part of institutional culture and personal career patterns, the more we undermine quality.
- "Big science" structures (management and commodification) cover up rather than reveal the roots of the problem.

Evidence of crisis:

- Retraction watch revealing increasing trends of retractions.
- Anecdotal evidence of extreme cases of fraud and betrayal in science. Closer to home: many less extreme but still severe cases.
- □ The reproducability crisis (e.g. Begley & Ellis 2012)
- P-hacking and useless statistics (Ionnanidis 2005; J.P.v.d. Sluijs 2016)
- Overselling of (composite) indicators and numbers (Giampetro & Saltelli 2014)
- Lack of predictability in important global areas (Saltelli & Funtowicz 2014)

Systemic?

- The pace of publications
- The carving out of smaller specialisations
- Legal frameworks around research (commitment to planned results)
- Innovation pressure => patents & limited secrecy & increased competition
- Career pressures (h-index, high impact journals, soft money, etc)

The theory (or: the illusions of safety)

- In a system of total monitoring coupled to one-dimensional paths of progress, any delay in relation to estimated milestones will be balanced by acceleration.
- General psychology: the more safety measures we build into the system, the more wreckless behavior is encouraged.

Translation:

- One-dimensionality of research developments, coupled to measurable milestones and monitoring of progress leads to temptations of cutting corners and speeding.
- Individual accountability and responsibility is seen as taken away from the individual, and thus placed on the "system".
- Asymmetry: After the damage, the public tends to see the individual as solely responsible (human failure).

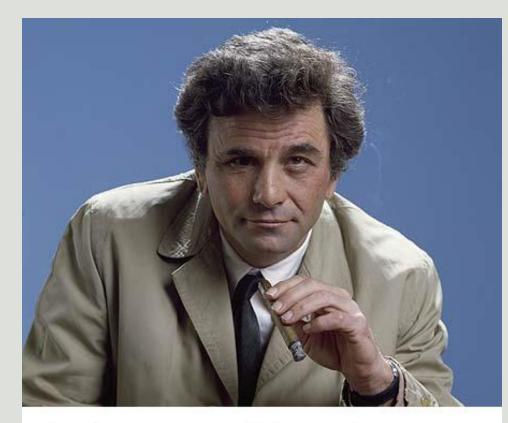
What to do?

What we need anyway:

- Transparency
- Open science
- Responsibility and accountability (RRI)
- Advisory bodies
- Better training
- Extended peer-reviews (NB ≠≠ citizen science or coproduction of knowledge)

What I would like to see:

- Slow science, i.e. longer and wider processes of knowledge quality assessment;
- Inclusion of study of scientific failures in study;
- Pluralism in methodology and knowledge validation;
- Explicit assessments of uncertainty and values.


Criticism:

- Citizen science (co-producion of knowledge etc) overestimates the analytic power of citizens;
- It also over-estimates their engagement in theoretical issues (stakeholder fatique);
- It unneccessarily inflates many issues;
- With a new type of responsible scientist it is not needed.

My conclusions:

- Bureaucratic short-term measures seem limited in their effect.
- Transparency, openness, extended peer-reviews and pro-longed quality control mechanisms are necessary but not sufficient mechanisms to improve the integrity of science.
- Hopes for the workings of citizen science, co-production of knowledge, or even Do-ityourself-science to correct current failings may be pipedreams of an intellectual elite!
- We need to re-invent the scientist, the universities, and the communications of research.
- Core-element of new paradigm for slow science must be the introduction of plurality, the scoping of uncertainty, the visibility of values, and the assessement of failure.

Thanks for your kind attention!

Just one more thing... is your data faked?

matthias.kaiser@uib.no